A Novel Missense Mutation, I890T, in the Pore Region of Cardiac Sodium Channel Causes Brugada Syndrome

نویسندگان

  • Anna Tarradas
  • Elisabet Selga
  • Pedro Beltran-Alvarez
  • Alexandra Pérez-Serra
  • Helena Riuró
  • Ferran Picó
  • Anna Iglesias
  • Oscar Campuzano
  • Víctor Castro-Urda
  • Ignacio Fernández-Lozano
  • Guillermo J. Pérez
  • Fabiana S. Scornik
  • Ramon Brugada
چکیده

Brugada syndrome (BrS) is a life-threatening, inherited arrhythmogenic syndrome associated with autosomal dominant mutations in SCN5A, the gene encoding the cardiac Na(+) channel alpha subunit (Na(v)1.5). The aim of this work was to characterize the functional alterations caused by a novel SCN5A mutation, I890T, and thus establish whether this mutation is associated with BrS. The mutation was identified by direct sequencing of SCN5A from the proband's DNA. Wild-type (WT) or I890T Na(v)1.5 channels were heterologously expressed in human embryonic kidney cells. Sodium currents were studied using standard whole cell patch-clamp protocols and immunodetection experiments were performed using an antibody against human Na(v)1.5 channel. A marked decrease in current density was observed in cells expressing the I890T channel (from -52.0 ± 6.5 pA/pF, n = 15 to -35.9 ± 3.4 pA/pF, n = 22, at -20 mV, WT and I890T, respectively). Moreover, a positive shift of the activation curve was identified (V(1/2) = -32.0 ± 0.3 mV, n = 18, and -27.3 ± 0.3 mV, n = 22, WT and I890T, respectively). No changes between WT and I890T currents were observed in steady-state inactivation, time course of inactivation, slow inactivation or recovery from inactivation parameters. Cell surface protein biotinylation analyses confirmed that Na(v)1.5 channel membrane expression levels were similar in WT and I890T cells. In summary, our data reveal that the I890T mutation, located within the pore of Na(v)1.5, causes an evident loss-of-function of the channel. Thus, the BrS phenotype observed in the proband is most likely due to this mutation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrophysiological Characteristics of a SCN5A Voltage Sensors Mutation R1629Q Associated With Brugada Syndrome

Brugada syndrome (BrS) is an inherited arrhythmogenic syndrome leading to sudden cardiac death, partially associated with autosomal dominant mutations in SCN5A, which encodes the cardiac sodium channel alpha-subunit (Nav1.5). To date some SCN5A mutations related with BrS have been identified in voltage sensor of Nav1.5. Here, we describe a dominant missense mutation (R1629Q) localized in the fo...

متن کامل

A homozygous SCN5A mutation in a severe, recessive type of cardiac conduction disease.

Cardiac sodium channels are key players in the generation and propagation of action potentials in the human heart. Heterozygous mutations in the SCN5A gene have been found to be associated with long QT syndrome, Brugada syndrome, and sinus node dysfunction (SND). Recently, overlapping arrhythmia phenotypes have been reported as well. Here we describe a novel recessive SCN5A mutation in a family...

متن کامل

Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family.

BACKGROUND The SCN5A gene encoding the human cardiac sodium channel alpha subunit plays a key role in cardiac electrophysiology. Mutations in SCN5A lead to a large spectrum of phenotypes, including long-QT syndrome, Brugada syndrome, and isolated progressive cardiac conduction defect (Lenègre disease). METHODS AND RESULTS In the present study, we report the identification of a novel single SC...

متن کامل

Lidocaine-induced Brugada syndrome phenotype linked to a novel double mutation in the cardiac sodium channel.

Brugada syndrome has been linked to mutations in SCN5A. Agents that dissociate slowly from the sodium channel such as flecainide and ajmaline unmask the Brugada syndrome electrocardiogram and precipitate ventricular tachycardia/fibrillation. Lidocaine, an agent with rapid dissociation kinetics, has previously been shown to exert no effect in patients with Brugada syndrome. We characterized a no...

متن کامل

Flecainide provocation reveals concealed brugada syndrome in a long QT syndrome family with a novel L1786Q mutation in SCN5A.

BACKGROUND Mutations in SCN5A can result in both long QT type 3 (LQT3) and Brugada syndrome (BrS), and a few mutations have been found to have an overlapping phenotype. Long QT syndrome is characterized by prolonged QT interval, and a prerequisite for a BrS diagnosis is ST elevation in the right precordial leads of the electrocardiogram. METHODS AND RESULTS In a Danish family suffering from l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013